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"SOME RULES CAN BE BENT, OTHERS CAN BE BROKEN"
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LEGAL NOTICES AND 
DISCLAIMERS

2

This presentation contains the general insights and opinions of Intel Corporation (“Intel”). The information in this 
presentation is provided for information only and is not to be relied upon for any other purpose than educational. 
Use at your own risk! Intel makes no representations or warranties regarding the accuracy or completeness of the 
information in this presentation. Intel accepts no duty to update this presentation based on more current 
information. Intel is not liable for any damages, direct or indirect, consequential or otherwise, that may arise, directly 
or indirectly, from the use or misuse of the information in this presentation.
Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, 
software or service activation. Learn more at intel.com, or from the OEM or retailer.
No computer system can be absolutely secure. 
No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this 
document.
Intel, Intel Inside, the Intel Core, and the Intel logo are trademarks of Intel Corporation in the United States and other 
countries. 
*Other names and brands may be claimed as the property of others. 
© 2017 Intel Corporation. 
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“HAND WAIVING” DISCLAIMER

• I will do some hand waiving 

explanation

• Sorry 

• If you want a deeper dive, 

look at the references slide

• Mostly citing academic 

papers

• Really wanted to do a demo 

• For more info, come talk to 

me

• https://camo.derpicdn.net/e08caaabde22bda0e94ac778cd08c
ad0d1b0ed94?url=http%3A%2F%2Fstream1.gifsoup.com%2F

view7%2F2738731%2Fjedi-mind-trick-o.gif
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WHO AM I?

• Guy Barnhart-Magen

• Security Researcher, 
Manager, Presenter

• Interests: 

Crypto, Embedded systems, System and 

product security 

• iSTARE team

• Intel Security Threat Analysis and 

Reverse Engineering

• Leading the “AI Security 

Innovations” team

• “We break what we make”

We Are Hiring!
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WHAT IS ARTIFICIAL INTELLIGENCE?

• https://i.kinja-img.com/gawker-media/image/upload/t_original/gaflyotna4s2ddvb8f0r.gif
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Perform intellectual tasks as humans can. 

In general it should be able to:

• Learn

• Represent knowledge

• Plan

• Make decisions under uncertainty

• Communicate in a natural language 

• Use these skills towards common goal(s) to be AI-complete

Most of the AI systems in place today are Weak Artificial 

Intelligence, which were designed to solve a specific problem.

Basic model: input{code, 
data}, algorithm, 

output{classification, 
probability}
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MACHINE LEARNING TYPES

• https://8.smash.com/u/2016/03/The-Matrix.gif

Supervised Learning (Input 

and Output is specified for 

training), 

Unsupervised Learning (Only 

input is given to recognize 

patterns) and 

Reinforcement learning (Real 

world feed back is provided to 

system on the go). 
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MACHINE LEARNING 101

• https://i.imgflip.com/jj0ii.jpg
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CURVES SEPARATE CLASSES
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FIND CURVE PARAMETERS
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MULTIPLE INPUTS ARE ENCOURAGED 
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INNER CONNECTIVITY IS GOOD!
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ARCHITECTURE IS THE LAYOUT
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ADVANCED TOPICS AHEAD

• Neural networks (NN) with 

memory

• NN with cross layer 

connectivity

• NN with multiple hidden 

layers

• Fully/Semi connected layers

• Deep Learning – NN made 

out of NN (think inception)

• Many more options…

• http://thoughtmedicine.com/wp-
content/uploads/2010/07/inception.jpg
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CLEVER HANS

https://github.com/tensorflow/cleverhans

• https://upload.wikimedia.org/wikipedia/commons/e/e3/CleverHans.jpg
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“We have reached the point 
where machine learning works, 
but may easily be broken” 

Nicolas Papernot, Google PhD Fellow in Security 

Ian Goodfellow, Research scientist at Google Brain

https://pbs.twimg.com/profile_images/799327801388077057/HcDnA1H7_400x400.jpg
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Threat Modeling AI?
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To break a machine learning model, an attacker can compromise 

its:

• Confidentiality

Think of it as privacy. If attackers can gain the data the model was trained on – a lot of 

information is exposed

• Integrity

Alter predictions from intended ones (very possible in reality)

Some examples in the slides ahead

• Availability

What if we can take the algorithm offline/DoS? 

e.g. a malicious road sign causes the autonomous driving AI to crash
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THREAT MODELING AI?
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THREAT MODELING AI?
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THREAT MODELING AI?
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THE DEVIL LIES IN THE DETAILS...

• The “curves” fit more points 

than what you planned for

• Gray area

• Many points that lead to the same 

output

• There is a lot of noise

• Hiding is easy

• Backdoors are almost 

impossible to detect

• https://pbs.twimg.com/profile_images/799327801388077057
/HcDnA1H7_400x400.jpg
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HIDING IN UNTRAINED DATA

• Almost all training is done 

with positive data points

• Even if negative data points 

are used, they are a small 

set of possible examples

• Negative data points > 

Positive data points

• https://s-media-cache-
ak0.pinimg.com/originals/42/09/6b/42096bc4ad49bfb70feb55

6cece77f1d.jpg
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SOME EXAMPLES MAYBE?

• http://i.imgur.com/0srqDzj.jpg
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33• Adversarial examples in the physical world
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34• Adversarial examples for evaluating reading comprehension systems
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45• BadNets: Identifying Vulnerabilities in the Machine Learning Model Supply Chain

Malicious Transfer 
Learning
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46• https://cdns.kinguin.net/media/category/e/n/enemy_protoss_encampment_on_kaldir-1024.jpg

•AI is not secure yet – plenty of holes to 
poke at

•This is not as complex as you might think

•Most of what you know already in app 
sec applies here

•Don’t buy into the hype, AI is still simple 
enough to take it on
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Any Questions?

@barnhartguy
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