
Crypto Failures
From basics to advanced stuƦ

Guy Barnhart-Magen
DC9723

Who am I?
Father of two, hacker

BSidesTLV chairman and CTF
member

(Lucky to speak at many
conferences)

Today: SecureAI CTO

Before: Intel, Cisco and a couple of Startups

OS Hardening, Crypto, Embedded Security,
Security of ML

@barnhartguy

Agenda

New format

Two Parts

● Intro to Crypto

○ Some failures, mostly
engineering

Break

● Advanced stuff

○ Multi Party Computation
○ CurveBall

CRYPTO BASICS FOR PEOPLE SCARED OF MATH

Building Blocks

Confidentiality

Integrity

Authenticity

BASICS

Keeping things secret

Can we forge a message?

Can we trust that this is from the
sender?

What do we need to build a secure protocol?

Hash Functions

Encryption

Signatures

Randomness

How Much Time to Break?

Linear Time

Polynomial Time

Exponential Time

Trap Door Problems

Known parameters ⇒ computation easy

Unknown parameters ⇒ very hard

Once mixed, difficult to unmix

Cryptographic
Hash
Functions

One way function

1 bit change in input
changes ~50% of output

Looks just like noise

SHA1("The quick brown fox jumps over
the lazy
dog")2fd4e1c67a2d28fced849ee1bb76e73
91b93eb12

SHA1("The quick brown fox jumps over

the lazy

cog")de9f2c7fd25e1b3afad3e85a0bd17d9

b100db4b3

280 to bruteforce, 2019 attack: 268

This is now practical with ~$100K of Amazon
EC2

Symmetric
Cryptography

Two way function

1 bit change in input
changes ~50% of output

Looks just like noise

Very fast

msg = aes.encrypt("The quick brown fox

jumps over the lazy dog" +

"\0"*21)caf5f61978f250e4f34533fcba2ffe54

1623aa5c6be805c27df12a00659a2d6857138f7e

efcf4fa09d301200091cec8fc30614ad5e9ae2e2

740f3bcc550468f6

msg = aes.encrypt("The quick brown fox

jumps over the lazy cog" +

"\0"*21)272e9f8c4d8b7e52800c9dddfdb96aa2

2fc0a28f69aa2ef90ce580d34b3bd29c9de87c59

859e70e30cd050721bd28787c92cb54b47fc3b47

5c78d3731832d74d

Asymmetric
Cryptography

Different operations to encrypt and
decrypt

Very Slow

Create a Private and Public key pair (keep your
private key secret)
PubKey, PrvKey = GenASymmKeys(RSA,4096)

Give everyone your public key

Now anyone can create a message, encrypt it
with your public key
EncMsg = Enc(msg, PubKey)

Only you can decrypt it with PrvKey
msg = Dec(EncMsg, PrvKey)

Signatures

Prove your identity by proving you have
a secret tied to your public identity

Very Slow

Having a PrvKey is equivalent to an identity
(holding the key is proof you have the secret)

h = hash(msg)

signature = EncMsg(h, PrvKey)

Now anyone can verify that you signed msg, with
your published PubKey
h = hash(msg)

h` = DecMsg(signature, PubKey)

h == h` proves you signed msg

Randomness

The chance to predict the next bit is 50%

TRNG - True Random Number Generator

PRNG - Pseudo Random Number Generator

random=PRNG(seed=TRNG)

What happens when the random isn’t random?

We often assume nonce values are random

RSA

Reversing exponents...

A Little Math

X2*X3 = X5

13 mod 12 = 1

RSA or the Discrete Log Problem

1. n = p*q (prime numbers)
2. Choose e (e.g. 216+1 = 65537)
3. d = e-1 mod n
Pub{e,n}
Prv{d}

RSA or the Discrete Log Problem

Encryption:
C = me mod n

Decryption:
m = Cd mod n = (me)d mod n = m

RSA or the Discrete Log Problem

P = 61, q = 53 ⇒ n = 3233
l(3233) = 780 ⇒ e = 17
d * e = 1 mod l(n) ⇒ 413*17 = 1 mod 780 ⇒ d = 413
Pub{n=3233,e=17}, Prv{n=3233,d=413}

C(65) = 65413 mod 3233 = 2790
m = 2790413 mod 3233 = 65

Binary Exponentiation?

313 = 31101 = 38 * 34 * 31

31 = 3
32 = 9
34 = 81
38 = 6561
313 = 6561 * 81 * 3 = 1594323

CRYPTO USAGES, BUILDING BLOCKS

Attacks

Timing

Power

Memory

Padding

Compression

Oracle

Elliptic Curves

Finding a point on a curve...

Bitcoin

Coin = Finding hash collisions (mining)

Wallets = Identities are tied to private
keys

Transactions = Signing coin transfers
from wallet to wallet

Blockchain = a decentralized database to store
coins (hash collisions) and transactions

Wallets/Identities/private keys (anonymous),
but not confidential - everything is recorded!

Lose your private key, you cannot sign
transactions, lose access to those coins (frozen
money)

Elliptic Curve
Cryptography
(ECC)

Asymmetric

Similar to RSA

Much faster

Wallet
Address = Hash(PubKey)
1DY5YvRxSwomrK7nELDZzAidQQ6ktjR

“This money I can spend, can now be spent by X”

BITCOIN TRANSACTION

Elliptic Curves

Elliptic Curve
Cryptography
(ECC)

Known: G

h: hash of the msg

d: private key

k: random number

(r,s): signature

To create a transaction we need to sign our
message
msg = “This money I can spend, can now be

spent by X”

h = hash(msg)

k = random()

r = cross_op(k,G) //also random

sig = sign(h,r,k,d)

We publish sig on the blockchain, once
accepted then X has the money

What if k isn’t
random?

k isn’t random

r isn’t random either

s is public on the blockchain

1. Find a couple of transaction that share the
same k

2. Do some algebra, extract k
3. Now use k and s to extract d
4. d is the private key
5. …
6. Profit!

IF k IS NOT RANDOM …

IF WE HAVE A COLLISION?

IF WE KNOW k?
• •

AND NOW IN ENGLISH?

But this cannot happen in
the real world!

THIS CAN’T HAPPEN IN THE REAL WORLD!

THIS CAN’T HAPPEN IN THE REAL WORLD!

m = open(“/dev/random”, “rb”).read(30)

A small note regarding bitcoin...

Anonymity vs. Confidentiality

Anonymous - no one knows your
identity

Confidential - no one knows what you’re
doing

Anonymity vs.
Confidentiality

Bitcoin is not Anonymous, all transactions are
recorded on the blockchain

Remember WannaCry?

DEPLOYING BAD CRYPTO

Chain of trust is established
by verifying signatures, all
the way to a trusted root

Goto Fail
hashOut.data = hashes + SSL_MD5_DIGEST_LEN;
hashOut.length = SSL_SHA1_DIGEST_LEN;
if ((err = SSLFreeBuffer(&hashCtx)) != 0)
 goto fail;
if ((err = ReadyHash(&SSLHashSHA1, &hashCtx))
!= 0)
 goto fail;
if ((err = SSLHashSHA1.update(&hashCtx,
&clientRandom)) != 0)
 goto fail;
if ((err = SSLHashSHA1.update(&hashCtx,
&serverRandom)) != 0)
 goto fail;
if ((err = SSLHashSHA1.update(&hashCtx,
&signedParams)) != 0)
 goto fail;
 goto fail;
if ((err = SSLHashSHA1.final(&hashCtx,
&hashOut)) != 0)
 goto fail;

err = sslRawVerify(...);

Chain of trust is established
by verifying signatures, all
the way to a trusted root

Goto Fail
hashOut.data = hashes + SSL_MD5_DIGEST_LEN;
hashOut.length = SSL_SHA1_DIGEST_LEN;
if ((err = SSLFreeBuffer(&hashCtx)) != 0)
 goto fail;
if ((err = ReadyHash(&SSLHashSHA1, &hashCtx))
!= 0)
 goto fail;
if ((err = SSLHashSHA1.update(&hashCtx,
&clientRandom)) != 0)
 goto fail;
if ((err = SSLHashSHA1.update(&hashCtx,
&serverRandom)) != 0)
 goto fail;
if ((err = SSLHashSHA1.update(&hashCtx,
&signedParams)) != 0)
 goto fail;
 goto fail;
if ((err = SSLHashSHA1.final(&hashCtx,
&hashOut)) != 0)
 goto fail;

err = sslRawVerify(...);

Bitlocker (SW) will use HW if available

Bitlocker
Several self encrypting
drives had weak
firmware, leading to
attacks
● Password and DEK

not linked
● Single DEK for entire

disk
● non-random DEK
● Wear leveling
● Zero buffer as

password

Crypto is hard for experts

Never roll your own crypto!

Writing your
own crypto

Hook Send/Recv system calls

Uses GCM to authenticate

Encrypt with a fixed key

CryptHook
Same key and no sequence numbers leads to:
● Replay attack
● Message re-ordering
● Selectively dropping messages
● No session key - no forward secrecy

IS EVERYTHING ON FIRE?

https://www.reddit.com/r/crypto

https://crypto.stackexchange.com/

Consultants/Experts

Crypto Review Firms

WHERE TO GET ADVICE?

Never roll your own
crypto!

https://www.reddit.com/r/crypto
https://crypto.stackexchange.com/

Always vet your own libraries

Don’t trust people that roll their own crypto

Performance is a major differentiator

Which feature do you need? Attack model?

There are more options than OpenSSL

https://en.wikipedia.org/wiki/Comparison_of_cryptography_lib
raries

https://github.com/sobolevn/awesome-cryptography#framewo
rks-and-libs

LIBRARIES YOU SHOULD LOOK AT

BoringSSL

Golang/crypto

NaCL

NSS

WolfCrypt

MatrixSSL

https://en.wikipedia.org/wiki/Comparison_of_cryptography_libraries
https://en.wikipedia.org/wiki/Comparison_of_cryptography_libraries
https://github.com/sobolevn/awesome-cryptography#frameworks-and-libs
https://github.com/sobolevn/awesome-cryptography#frameworks-and-libs

WHAT CAN YOU DO?

Leave implementation of crypto algorithms to
experts, update when possible

Take classes, courses, training and workshops -
become an expert yourself

Read a lot, have a relevant degree (Math, EE, CS) -
follow up on papers and conferences

Review your code by experts, save a lot of headache
down the road

Outsource to others, where possible

THANK YOU!

Questions?
@barnhartguy

More after the break!

Common Problems

Sharing Keys and Key Management

Splitting secrets

Diffie Hellman Key Exchange

Alice and Bob want to create a shared secret s, but don’t have
anything to rely on

Diffie Hellman Key Exchange

Agree on modulus and base (n=23, g=5)
Alice: Prv{a=4}, send A=ga mod n ⇒ A=54 mod 23=4
Bob: Prv{b=3}, send B=gb mod n ⇒ B=53 mod 23=10
SA=104 mod 23=18
SB=43 mod 23 = 18

Diffie Hellman Key Exchange

This is vulnerable to MitM

To better understand, look into STS variants

Multi Party Computation

My password is DC9723

Multi Party Computation

DC9_2_
DC_7_3

DC97_3
DC9_23
DC_72_

Multi Party Computation

DC9723 ⇒ 68,69,57,55,50,51
686,957,555,051

R = 123,123,123,123 (gradient)

Multi Party Computation (Shamir Secret Sharing)

(0,686957555051)
(1,810080678174)

y=ax+b
y=123123123123*x + 686,957,555,051 (2,933203801297)

Breaking Passwords

Passwords should not be stored in the clear

Hash(password) ⇒ can we still break?

KDF(password) ⇒ longer time to break?

KDF(password | salt | pepper) ⇒ even longer time to break?

Hash Tables (Rainbow Tables)

Take all possible passwords,
Build a database of {Hash(password), password} pairs

For any given hash, lookup in the database to find the
password

Easy, right?

Hash Tables (Rainbow Tables)

Compute time

Storage space

Rainbow Table Attacks

CipherText = Encryption(Message, Key)

If I only have CipherText, can I break it?

If I know both the Message and the CipherText, can I
break it?

Rainbow Table Attacks

M0 M1 M2 M3

M1=00000000

C1=Enc(M1,Key)

CurveBall (CVE-2020-0601)

ECC Certificate Validation

1. Choose a known good point G (generator/base
point)

2. Q = dxG ⇒ Pub{Q,G}, Prv{d,G}
3. s=mxd (m is the message to sign)

a. sxG=(mxd)xG
b. mxQ can be computed
c. mxQ should be equal to (mxd)xG

i. (mxd)xG=mx(dxG)=mxQ

ECC Certificate Validation

What if no-ones verified that we use the same G?

If you can choose any G you want, you can cheat!
G’=Q/d’ (remember Q=dxG)
So…
Q=d’xG’ and Q=dxG

If only Q is checked, we can sign using d’

ECC Certificate Validation

But a certificate with G’ and Q is different than G and
Q, right?

ECC Certificate Validation

There are only two hard things
in Computer Science: cache
invalidation and naming things.

-- Phil Karlton

ECC Certificate Validation

Windows CryptoAPI Vulnerability

If the legitimate certificate is cached, only Q is
compared for the certificate to be validated

ECC Certificate Validation

No CVE if:
● only standard ECC parameters are allowed

○ No control over G
● Comparing all parameters (or digest)

○ No caching exploitation

Thanks

Tal Be’ery - gread blog posts

Filo Sottile - Bitcoin vulnerability

THANK YOU!

Questions?
@barnhartguy

