
Linux Hardening
Made easy

WiFi
BSidesLVWorkshops1

Workshops01234

Who am I?
Guy Barnhart-Magen

@barnhartguy

BSidesTLV Chairman and CTF Lead

Agenda
● Threat Model

● What to focus on

● Hardening the system

● Safety

● Hands on

● Advanced

Our System
Ubuntu 18.04.2 LTS

LTS = Long Term Support

Simple VM hosting NGINX web server with a dummy application

Threat Model
Consider the following:

● Is the VM compromised?

● Do we need a scalable solution?

● Is it open to the internet?

● How do we do patch management?

● If an attacker gets a shell, what is compromised?

● If an attacker gets root access, what is compromised?

● Do we have someone to look at reports?

Threat Model
Attacker model

● Is this a targeted or opportunistic attack?

● Do I have vital business value on this VM?

● Is the system old? Any security concerns? Something signaling to attackers?

What to focus on

Passive vs. Active
Passive - build defenses, but an attacker is not present in the system allowing for more

flexibility

Active - need to remove an attacker (or suspicion) from the system, before deploying

defenses

Hardening the System
● Passive vs. Active

● Firewall

● Updates

○ Repo, security, patches/upgrades

○ Remove unneeded packages

● SSH

○ 2FA

○ fail2ban

● User Accounts

○ Credentials, ACL

● Remote Logging

● Sensitive Files/Directories

● Remove unneeded TTY

● Secure Shared Memory/tmp folder

● Remove uncommon filesystems

● Disable compilers

● Set UMASK

● Disable core dumps

● Wrapper for iptables

● Enable Firewall

Firewall
$ sudo ufw allow ssh
$ sudo ufw enable

We would like to keep all our repositories up to

date

● Also, we would like to automate this

● Be careful - updates can break stuff!

● Rebooting is also a concern

Updating the System
$ sudo apt-get update

$ sudo apt-get upgrade -y

We would like to keep all our repositories up to

date

● Also, we would like to automate this

● Be careful - updates can break stuff!

● Rebooting is also a concern

Updating the System
$ sudo apt-get install unattended-upgrades
apt-listchanges

$ sudo dpkg-reconfigure -plow
unattended-upgrades

$ sudo nano
/etc/apt/apt.conf.d/50unattended-upgrades

Unattended-Upgrade::Mail "user@example.com";

Unattended-Upgrade::Automatic-Reboot "true";

$ sudo unattended-upgrades --dry-run

● Reduce attack surface

● We should remove old/unneeded packages

Examples:

Ipv6, irqbalance, Bluetooth, USB storage driver,

Anacron, Apport, Atd, Autofs, Avahi, CUPS,

Dovecot, Modemmanager, Nfs, Snmp, Telnet,

Whoopsie, Zeitgeist

Updating the System
$ dpkg --list

$ dpkg --list packageName

$ apt-get remove packageName

$ sudo apt-get --purge ntfs-3g

● We should limit the number of users that are

allowed to login (never root)

● We should better protect these account

● If you can, use PKI keys

○ If you cannot, use 2FA

SSH Hardening
$ ssh-keygen -t ed25519

$ nano /etc/ssh/sshd.conf

PermitRootLogin no

ChallengeResponseAuthentication no

PasswordAuthentication no

UsePAM no

AuthenticationMethods publickey

PubkeyAuthentication yes

AllowUsers user1 user2

PermitEmptyPasswords no

ClientAliveInterval 300

ClientAliveCountMax 0

IgnoreRhosts yes

● Use TOTP

● Try to limit the number of users who have

access, or share TOTP values

●

SSH Hardening - 2FA
$ sudo apt-get install
libpam-google-authenticator
$ google-authenticator -td --rate-limit=3
--rate-time=120
$ nano /etc/pam.d/sshd
auth required pam_google_authenticator.so
nullok

sudo nano /etc/ssh/sshd_config
ChallengeResponseAuthentication yes

$ sudo systemctl restart sshd.service
$ sudo service ssh restart

$ sudo apt-get install oathtool
$ oathtool -b --totp `head -n 1
~/.google_authenticator`

● Fail2Ban and Rate Limiting

● Future updates can overwrite files, make

copies

●

SSH Hardening - Brute Force Attacks
$ sudo ufw limit ssh comment “rate limit ssh”

$ sudo apt-get install fail2ban
$ sudo cp /etc/fail2ban/fail2ban.conf
/etc/fail2ban/fail2ban.local
$ sudo cp /etc/fail2ban/jail.conf
/etc/fail2ban/jail.local
$ sudo systemctl start fail2ban
$ sudo systemctl enable fail2ban

● Separate user and admin accounts

● Limit “root” access

○ Root account shouldn’t have a login

● Verifying/setting that all world writable directories have their sticky bit set

User Accounts, ACL and special files/directories

$ sudo passwd -l root
$ sudo chown root:root /etc/passwd /etc/shadow /etc/group /etc/gshadow
$ sudo chmod 644 /etc/passwd /etc/group
$ sudo chmod 500 /etc/shadow /etc/gshadow

$ sudo find / -xdev -type d \(-perm -0002 -a ! -perm -1000 \) -print | while read
directory; do
 echo "$FUNCNAME: ${GREEN} Making sticky on ${directory}..."
 chmod +t ${directory}
 done

● Verifying/setting that there are no world-writable files on the system

● Verifying/setting that there are no unauthorized SETUID/SETGID files on the system

User Accounts, ACL and special files/directories

$ sudo find / -xdev -type f -perm -0002 -print | while read file; do
 chmod o-w ${file}
 done

$ sudo find / -xdev \(-perm -4000 -o -perm -2000 \) -type f -print| while read file; do
 if grep -Fxq "$file" "allowed_suid_list.txt"
 then
 echo “${file} - This program is allowed; leave it alone.”
 else
 chmod -s ${file}
 fi
done

● Use RSysLog

Remote Logging

$ sudo apt-get update && apt-get install rsyslog
$ sudo systemctl enable rsyslog
$ sudo systemctl start rsyslog

$ sudo nano /etc/rsyslog.d/01-server.conf

. @@distant-server-ip:514

$ sudo systemctl restart rsyslog
$ journalctl -f -u rsyslog

● Several tools: CIS Benchmark, Lynis

Audit

$ git clone https://github.com/CISOfy/lynis
$ lynis/lynis audit system

● You mostly pay attention to a single TTY, an attacker can work in a different one

Allow Single TTY

$ cat <<EOF > /etc/securetty
Console
Tty1
EOF

$ sudo nano /etc/default/console-setup
ACTIVE_CONSOLES=”/dev/tty1”

Reboot
$ dmesg | grep tty

●

Secure Shared Memory

$ sudo nano /etc/fstab
tmpfs /run/shm tmpfs defaults,noexec,nosuid 0 0

● Backup the /tmp dir, replace with new one (which is secure)

Secure Temporary Directories

dd if=/dev/zero of=/usr/tmpDSK bs=1024 count=1024000
mkdir /tmpbackup && cp -Rpf /tmp /tmpbackup
mount -t tmpfs -o loop,noexec,nosuid,rw /usr/tmpDSK /tmp
chmod 1777 /tmp

cp -Rpf /tmpbackup/* /tmp/ && rm -rf /tmpbackup/*

echo "/usr/tmpDSK /tmp tmpfs loop,nosuid,noexec,rw 0 0" >> /etc/fstab
mount -o remount /tmp

mkdir /var/tmpold
mv /var/tmp /var/tmpold
ln -s /tmp /var/tmp
cp -prf /var/tmpold/* /tmp/

● Prevent attackers from mounting filesystems that you don’t need and might benefit them

Disable Uncommon File-Types

$ ls -1 /lib/modules/$(uname -r)/kernel/fs | sort | uniq > avail_fs
$ mount | column -t | cut -c 82-90 | sort | uniq > used_fs

$ for fs in $(comm -1 used_fs avail_fs); do echo "blacklist $fs"; done

>> /etc/modprobe.d/blacklist.conf

● Prevent attackers from compiling code to get

higher order abilities

Disable Compilers
>>
COMPILERS=(
 "/usr/bin/byacc"
 "/usr/bin/yacc"
 "/usr/bin/bcc"
 "/usr/bin/kgcc"
 "/usr/bin/cc"
 "/usr/bin/gcc"
 "/usr/bin/c++"
 "/usr/bin/g++"
)

for compiler in ${COMPILERS[@]}; do
 if [-f ${compiler}]; then
 echo "removing ${compiler}
 chmod 000 ${compiler}
 else
 echo "missing ${compiler}
 fi
done

Break

