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Introduction  

Vulnerability research objective is often to find a 
method to manipulate the software to behave in a 
way controlled by them. The most famous example 
of this is to cause a seemingly benign piece of 
software to execute our code 
 
A very promising way to find exploitable bugs is 
through fuzzing the software. By fuzzing, we mean 
the process of inputting random data into the software 
through the user accessible interfaces (API, command 
line etc.) in order to cause unexpected behaviour or 
crashes. 
However, employing large scale fuzzing framework 
sometimes has the unpleasant side effect of being too 
successful, producing thousands of possible 
candidates for exploitation. 
Given a specific crash/candidate the vulnerability 
researcher will conduct an analysis, sometimes 
following the code itself through reverse engineering, 
to determine if the specific crash answer two 
important imperatives: 

1. Is it reachable from user controlled input? 
2. Can it lead to an exploitation path that will 

achieve our required target? 
Answering these questions is time and resource 
consuming, and very difficult to determine 
accurately. In essence, it is very easy to show that 
something is exploitable when it is (e.g. build a PoC) 
but the inverse isn't true (showing that something in 
not exploitable). There might be some other way that 
might lead to exploitation - and this is where the 
researcher’s experience, creativity and determination 
comes into play. 
In our previous work[2] we showed how ML can be 
subverted either through direct manipulation, or 
indirectly through exploiting vulnerabilities. This 
experience pushed to think how can we use ML in 
order to simplify our work. 

Background 
In this research we set out to find out if the process of 
finding suitable candidates for our research team to 
analyse could be accelerated through the use of tools 
from the domain of Machine Learning. 
We wanted to build a tool (based on a machine 
learning model) that can outperform the best tool we 
could find, ​exploitable​[1]. 

 
Exploitable​ is a tool developed to analyze crash 
dumps through a set of heuristics, and indicate 
whether it is exploitable or not. It provides three 
outputs once analysis is complete: 

● Exploitable - this sample has a known 
vulnerability and it is exploitable 

● Probably Exploitable - there are some 
indicators showing that this sample is 
exploitable, but it is not trivial 

● Unknown - it is not clear if it is possible to 
exploit the sample or not 

Objectives 

Our objectives were to outperform ​exploitable​ when 
running on the same data set. In order to achieve this 
goal we broke it down into several tasks, the most 
important one was - can we identify exploitable 
samples in places where ​exploitable​ isn't sure or 
doesn’t know that they are exploitable? 
 

Data Set 

In order to train our model we needed to have a 
sufficient number of samples that are both known to 
be exploitable, as well as those known to not be 
exploitable. We spent considerable time trying to 
obtain such data sets without much success.  
Finally, we stumbled upon the data set provided by 
DARPA[3] during the Grand Cyber Challenge. In 
this data set, they collected a large set (634 
vulnerability samples) where each one was known to 
be exploitable in some way. We couldn't find a 
proper set of similarly non-exploitable pieces of 
software as a control group and decided to proceed 
with ML tools that focus on a single class domain. 
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Gathering Data 

Our vulnerable samples had different dependencies, 
and required different inputs. We strongly believe in 
reproducibility, and in having an easy to replicate 
testing environment. To be able to do so, we set up a 
Docker environment where we could run the 
vulnerable software and collect the appropriate 
generated artifacts.  
That way, we can ensure reproducibility of these 
experiments and provide a common environment that 
researchers can use to replicate our conclusions. 
We built a pipeline that achieved the following: 

1. Run The Program​ - Run the vulnerable 
sample in a contained environment 

2. Gather Crash Data​ - Allow the guest OS to 
capture a large amount of crash data (Core 
dump) 

3. Crash Analysis​ - Analyze these artifacts, 
using ​exploitable​ and keeping its results 

4. Feature Extraction​ - Extracting our desired 
features from the ​exploitable​ output 

The results of this piplie is later fed to the ML model 
as their dataset. 
 

Crash Analysis 

In the traditional approach to crash analysis, we take 
a look at the program flow, at the output from 
exploitable​, and at the information from frames, 
registers, threads and stack information. 
We collected these core dumps, and used GDB and a 
couple of scripts to extract the data in a binary 
format, into a textual representation, thus allowing 
the model to replicate our traditional manual work. 
 
g() { 

gdb  --batch -ex bt -ex "info all-registers" 
-ex "info frame" -ex "info functions" -ex "info 
registers" -ex "info stack" -ex "info threads" -ex 
"exploitable" -c $1 > $1.res 
} 

Feature Extraction 

Once we had the crash dumps from each sample, we 
wrote a python script to extract the features we 
deemed important. 

● EAX, EBX, ECX, EDX - general purpose 
registers (holding values, addresses) 

● ESP, EBP - Stack pointers 
● ESI, EDI - Source and Destination Index 

(for string operations) 
● EIP - Instruction pointer 
● CS, SS, DS, ES, FS, GS - Segment registers 

 
In order to simplify our model ingestion of the 
different values (and to increase model accuracy), we 
tried two approaches. The first was a rough 
categorization through semantics, and the other 
through rough binning. 
 

 
Figure 1 - Values distribution of the ECX register for 

our sample 
 

Semantic 
The value distribution for the registers can be roughly 
divided into three semantic groups: 

● Low values (<1,000,000) - usually 
computation results or temporary values 

● Mid range - usually user land addresses 
● High range - (>0x1FFFFFFF) usually kernel 

addresses 
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Binning 
A different approach we tried was to create 10 evenly 
distributed “bins” ( ) or groups and fit10

value  − valuehigh low  
our samples into these bins. 
 
Both of these approaches simplify the data ingestion 
to the model. However, the semantic approach was 
too rough and did not yield good results. We 
hypothesized that if we did a finer grained approach 
we could have gotten better results, but did not 
attempt this. 
Our best results were received through the use of 
binning. A possibly better approach could have been 
to use a binning strategy that had finer resolution at 
the low and high ends and lower resolution in the 
middle ranges, to better conform with our values 
distribution. 

Building the Models 

We built three different models, using different 
approaches. One of our constraints was finding 
models that fit our use case - a single class (as we 
know every sample is exploitable) and train against 
that data. 
 
We built our model based on the 609 samples 
correctly identified by ​exploitable​ as exploitable and 
ran the other 25 samples (which ​exploitable​ identified 
as either probably exploitable or unknown) against 
this model to measure its accuracy. As we know these 
25 samples are also exploitable, our aim was to 
identify as many of these as possible, thus out 
performing ​exploitable​. 
table 
 

One Class SVM 
Our first approach was to use one class support 
vector machines, as they are very suitable for our use 
case. They train on a single group or class of data, 
and allow us to predict if a new sample is similar to 
the previous samples that it trained on - which the 
model is built on. 
 

Cosine Similarity 
Our second approach was to use a cosine similarity 
metric to determine the distance (or the inverse, 
similarity) of each of the 25 mis-labeled samples, to 
the rest of the correctly labeled samples. 
For distance measurements we used two different 
approaches, linear distance and centroid distance, 
comparing their results to achieve best performance. 
 

XGBoost 
We used XGBoost primarily to look into how the 
model is interpreting the input parameters it is trained 
on. The structure of the model is similar to a tree, 
where the root of the tree has the most contributing 
parameter, and each level after that represent a 
hierarchy of parameter contribution. 
Analysing the tree gives us some insight to which 
parameters are the most important, and what are 
some of the relationships between them.  

Results 
Goals 
Our goal was to use the data we have (634 samples) 
which we know are exploitable to train our model 
and test the cases where ​exploitable​ was not able to 
correctly identify the sample as exploitable (25 
samples). 
 
Simply speaking, we tried to categorize the 12 
“Probably Exploitable” and 13 “Unknown” as 
“Exploitable”. 
 
OneClassSVM 
Our trained model was able to correctly identify most 
of the samples, correctly identifying 23 samples as 
“Exploitable” and identifying 2 samples as “Probably 
Exploitable”. 
 
We were also able to show that two of the samples 
are outliers, meaning that they look very different 
than the samples the model trained on - but still 
identified as “Probably Exploitable”. 
 
Cosine Similarity 
We first tried using the basic 9 registers and got a 
relatively low accuracy of ~65%, which we found too 
low. We were not happy with the results, so we 
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increases our data to 15 registers (using binning), 
which boosted our accuracy to ~87%. 
Our model was able to correctly identify 15 more 
samples when using Linear Similarity, and 22 
samples when using Cosine Similarity, which is the 
better method for our data distribution. 

XGBoost 

This model training is more traditional, and we split 
our data to 80% training (from each category, 
randomly selected) and 20% validation. 
We were able to achieve 95%-99% accuracy. Please 
note, that this result is to be expected as ~96% of our 
dataset fits in the “Exploitable” category, and a 
simple “return Exploitable” classifier will be correct 
96% of the time. 
  
Our analysis of the tree we received was interesting, 
it seems that it is sufficient to use only two 
parameters in order to correctly identify 90% of our 
samples. While this result is interesting, we doubt its 
real life value, as it is highly dependant on our data 
set.  

Comparison 

In the table below we compare our results from 
different types of analysis models, showing that using 
ML has clear benefits, when used on the same data 
set as ​exploitable​. 
 

Type EXP PXP UNK 

Original 634   

exploitable 609 12 13 

OneClassSVM 632 2  

Cosine Similarity 631 3  

XGBoost 632  3 
Table 1 - results for different types of analysis (EXP - Exploitable, 

PXP - Probably Exploitable, UNK - Unknown) 

Next Steps 

Data 

One of our biggest issues with the research project as 
it is, is the amount of data and the type of data that 
we have. Getting a reliable data set for study proved 
extremely difficult, however we believe that more 
data will enable much better results, and more robust 
systems. 

ML 

There are other ML models and techniques we could 
employ with the data we have, and we invite the 
community to improve on our work. The results we 
have show that such techniques can really improve on 
the best methods available today. 

Syzkaller 

Analyzing kernel crashes is more complex than 
analyzing user land crashes. Further - due to the 
popularity of syzkaller, there are multiple crash 
reports and test samples available at multiple mailing 
list. We believe that we can try a similar approach 
against that data set, and we will be focusing our 
efforts on that task. 

ASAN 

We want to try using AdressSANitizer[4] (ASAN) 
for additional data points. We believe that we could 
greatly improve the accuracy by using data points 
available in the ASAN output. 

Conclusions 
In conclusions, we showed that when using the same 
data set, we can use various ML techniques to 
outperform ​exploitable​. 
 
However, there are many issues that delay this 
project from being widely applicable. 
Data Variance​ - as we only have data on (verifiably) 
exploitable samples, we are lacking a control group 
to validate our models. 
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Data Bias​ - as most of the data we trained on has 
very specific vulnerability types, the ML model is 
biased to recognize these types. 
Data Set Size​ - our sample size is relatively small 
(~630 samples) and care should be taken when 
relying on these results. 
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