
Using Machines to Exploit Machines
Harnessing AI to Accelerate Exploitation

Guy Barnhart-Magen (@barnhartguy), Ezra Caltum (@aCaltum)
April 2019

Introduction

Vulnerability research objective is often to find a
method to manipulate the software to behave in a
way controlled by them. The most famous example
of this is to cause a seemingly benign piece of
software to execute our code

A very promising way to find exploitable bugs is
through fuzzing the software. By fuzzing, we mean
the process of inputting random data into the software
through the user accessible interfaces (API, command
line etc.) in order to cause unexpected behaviour or
crashes.
However, employing large scale fuzzing framework
sometimes has the unpleasant side effect of being too
successful, producing thousands of possible
candidates for exploitation.
Given a specific crash/candidate the vulnerability
researcher will conduct an analysis, sometimes
following the code itself through reverse engineering,
to determine if the specific crash answer two
important imperatives:

1. Is it reachable from user controlled input?
2. Can it lead to an exploitation path that will

achieve our required target?
Answering these questions is time and resource
consuming, and very difficult to determine
accurately. In essence, it is very easy to show that
something is exploitable when it is (e.g. build a PoC)
but the inverse isn't true (showing that something in
not exploitable). There might be some other way that
might lead to exploitation - and this is where the
researcher’s experience, creativity and determination
comes into play.
In our previous work[2] we showed how ML can be
subverted either through direct manipulation, or
indirectly through exploiting vulnerabilities. This
experience pushed to think how can we use ML in
order to simplify our work.

Background
In this research we set out to find out if the process of
finding suitable candidates for our research team to
analyse could be accelerated through the use of tools
from the domain of Machine Learning.
We wanted to build a tool (based on a machine
learning model) that can outperform the best tool we
could find, ​exploitable​[1].

Exploitable​ is a tool developed to analyze crash
dumps through a set of heuristics, and indicate
whether it is exploitable or not. It provides three
outputs once analysis is complete:

● Exploitable - this sample has a known
vulnerability and it is exploitable

● Probably Exploitable - there are some
indicators showing that this sample is
exploitable, but it is not trivial

● Unknown - it is not clear if it is possible to
exploit the sample or not

Objectives

Our objectives were to outperform ​exploitable​ when
running on the same data set. In order to achieve this
goal we broke it down into several tasks, the most
important one was - can we identify exploitable
samples in places where ​exploitable​ isn't sure or
doesn’t know that they are exploitable?

Data Set

In order to train our model we needed to have a
sufficient number of samples that are both known to
be exploitable, as well as those known to not be
exploitable. We spent considerable time trying to
obtain such data sets without much success.
Finally, we stumbled upon the data set provided by
DARPA[3] during the Grand Cyber Challenge. In
this data set, they collected a large set (634
vulnerability samples) where each one was known to
be exploitable in some way. We couldn't find a
proper set of similarly non-exploitable pieces of
software as a control group and decided to proceed
with ML tools that focus on a single class domain.

Using Machines to Exploit Machines
Harnessing AI to Accelerate Exploitation

Guy Barnhart-Magen (@barnhartguy), Ezra Caltum (@aCaltum)
April 2019

Gathering Data

Our vulnerable samples had different dependencies,
and required different inputs. We strongly believe in
reproducibility, and in having an easy to replicate
testing environment. To be able to do so, we set up a
Docker environment where we could run the
vulnerable software and collect the appropriate
generated artifacts.
That way, we can ensure reproducibility of these
experiments and provide a common environment that
researchers can use to replicate our conclusions.
We built a pipeline that achieved the following:

1. Run The Program​ - Run the vulnerable
sample in a contained environment

2. Gather Crash Data​ - Allow the guest OS to
capture a large amount of crash data (Core
dump)

3. Crash Analysis​ - Analyze these artifacts,
using ​exploitable​ and keeping its results

4. Feature Extraction​ - Extracting our desired
features from the ​exploitable​ output

The results of this piplie is later fed to the ML model
as their dataset.

Crash Analysis

In the traditional approach to crash analysis, we take
a look at the program flow, at the output from
exploitable​, and at the information from frames,
registers, threads and stack information.
We collected these core dumps, and used GDB and a
couple of scripts to extract the data in a binary
format, into a textual representation, thus allowing
the model to replicate our traditional manual work.

g() {

gdb --batch -ex bt -ex "info all-registers"
-ex "info frame" -ex "info functions" -ex "info
registers" -ex "info stack" -ex "info threads" -ex
"exploitable" -c $1 > $1.res
}

Feature Extraction

Once we had the crash dumps from each sample, we
wrote a python script to extract the features we
deemed important.

● EAX, EBX, ECX, EDX - general purpose
registers (holding values, addresses)

● ESP, EBP - Stack pointers
● ESI, EDI - Source and Destination Index

(for string operations)
● EIP - Instruction pointer
● CS, SS, DS, ES, FS, GS - Segment registers

In order to simplify our model ingestion of the
different values (and to increase model accuracy), we
tried two approaches. The first was a rough
categorization through semantics, and the other
through rough binning.

Figure 1 - Values distribution of the ECX register for

our sample

Semantic
The value distribution for the registers can be roughly
divided into three semantic groups:

● Low values (<1,000,000) - usually
computation results or temporary values

● Mid range - usually user land addresses
● High range - (>0x1FFFFFFF) usually kernel

addresses

Using Machines to Exploit Machines
Harnessing AI to Accelerate Exploitation

Guy Barnhart-Magen (@barnhartguy), Ezra Caltum (@aCaltum)
April 2019

Binning
A different approach we tried was to create 10 evenly
distributed “bins” () or groups and fit10

value − valuehigh low
our samples into these bins.

Both of these approaches simplify the data ingestion
to the model. However, the semantic approach was
too rough and did not yield good results. We
hypothesized that if we did a finer grained approach
we could have gotten better results, but did not
attempt this.
Our best results were received through the use of
binning. A possibly better approach could have been
to use a binning strategy that had finer resolution at
the low and high ends and lower resolution in the
middle ranges, to better conform with our values
distribution.

Building the Models

We built three different models, using different
approaches. One of our constraints was finding
models that fit our use case - a single class (as we
know every sample is exploitable) and train against
that data.

We built our model based on the 609 samples
correctly identified by ​exploitable​ as exploitable and
ran the other 25 samples (which ​exploitable​ identified
as either probably exploitable or unknown) against
this model to measure its accuracy. As we know these
25 samples are also exploitable, our aim was to
identify as many of these as possible, thus out
performing ​exploitable​.
table

One Class SVM
Our first approach was to use one class support
vector machines, as they are very suitable for our use
case. They train on a single group or class of data,
and allow us to predict if a new sample is similar to
the previous samples that it trained on - which the
model is built on.

Cosine Similarity
Our second approach was to use a cosine similarity
metric to determine the distance (or the inverse,
similarity) of each of the 25 mis-labeled samples, to
the rest of the correctly labeled samples.
For distance measurements we used two different
approaches, linear distance and centroid distance,
comparing their results to achieve best performance.

XGBoost
We used XGBoost primarily to look into how the
model is interpreting the input parameters it is trained
on. The structure of the model is similar to a tree,
where the root of the tree has the most contributing
parameter, and each level after that represent a
hierarchy of parameter contribution.
Analysing the tree gives us some insight to which
parameters are the most important, and what are
some of the relationships between them.

Results
Goals
Our goal was to use the data we have (634 samples)
which we know are exploitable to train our model
and test the cases where ​exploitable​ was not able to
correctly identify the sample as exploitable (25
samples).

Simply speaking, we tried to categorize the 12
“Probably Exploitable” and 13 “Unknown” as
“Exploitable”.

OneClassSVM
Our trained model was able to correctly identify most
of the samples, correctly identifying 23 samples as
“Exploitable” and identifying 2 samples as “Probably
Exploitable”.

We were also able to show that two of the samples
are outliers, meaning that they look very different
than the samples the model trained on - but still
identified as “Probably Exploitable”.

Cosine Similarity
We first tried using the basic 9 registers and got a
relatively low accuracy of ~65%, which we found too
low. We were not happy with the results, so we

Using Machines to Exploit Machines
Harnessing AI to Accelerate Exploitation

Guy Barnhart-Magen (@barnhartguy), Ezra Caltum (@aCaltum)
April 2019

increases our data to 15 registers (using binning),
which boosted our accuracy to ~87%.
Our model was able to correctly identify 15 more
samples when using Linear Similarity, and 22
samples when using Cosine Similarity, which is the
better method for our data distribution.

XGBoost

This model training is more traditional, and we split
our data to 80% training (from each category,
randomly selected) and 20% validation.
We were able to achieve 95%-99% accuracy. Please
note, that this result is to be expected as ~96% of our
dataset fits in the “Exploitable” category, and a
simple “return Exploitable” classifier will be correct
96% of the time.

Our analysis of the tree we received was interesting,
it seems that it is sufficient to use only two
parameters in order to correctly identify 90% of our
samples. While this result is interesting, we doubt its
real life value, as it is highly dependant on our data
set.

Comparison

In the table below we compare our results from
different types of analysis models, showing that using
ML has clear benefits, when used on the same data
set as ​exploitable​.

Type EXP PXP UNK

Original 634

exploitable 609 12 13

OneClassSVM 632 2

Cosine Similarity 631 3

XGBoost 632 3
Table 1 - results for different types of analysis (EXP - Exploitable,

PXP - Probably Exploitable, UNK - Unknown)

Next Steps

Data

One of our biggest issues with the research project as
it is, is the amount of data and the type of data that
we have. Getting a reliable data set for study proved
extremely difficult, however we believe that more
data will enable much better results, and more robust
systems.

ML

There are other ML models and techniques we could
employ with the data we have, and we invite the
community to improve on our work. The results we
have show that such techniques can really improve on
the best methods available today.

Syzkaller

Analyzing kernel crashes is more complex than
analyzing user land crashes. Further - due to the
popularity of syzkaller, there are multiple crash
reports and test samples available at multiple mailing
list. We believe that we can try a similar approach
against that data set, and we will be focusing our
efforts on that task.

ASAN

We want to try using AdressSANitizer[4] (ASAN)
for additional data points. We believe that we could
greatly improve the accuracy by using data points
available in the ASAN output.

Conclusions
In conclusions, we showed that when using the same
data set, we can use various ML techniques to
outperform ​exploitable​.

However, there are many issues that delay this
project from being widely applicable.
Data Variance​ - as we only have data on (verifiably)
exploitable samples, we are lacking a control group
to validate our models.

Using Machines to Exploit Machines
Harnessing AI to Accelerate Exploitation

Guy Barnhart-Magen (@barnhartguy), Ezra Caltum (@aCaltum)
April 2019

Data Bias​ - as most of the data we trained on has
very specific vulnerability types, the ML model is
biased to recognize these types.
Data Set Size​ - our sample size is relatively small
(~630 samples) and care should be taken when
relying on these results.

Acknowledgments
We would like to acknowledge Denis Klimov who
helped us with the ML part of the research.

References
[1] exploitable - https://github.com/jfoote/exploitable
[2] JARVIS never saw it coming -
https://www.youtube.com/watch?v=d99QshMaGtQ
[3] Grand Cyber Challenge -
https://github.com/jfoote/exploitable
[4] Address Sanitizer (ASAN) -
https://en.wikipedia.org/wiki/AddressSanitizer

