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JARVIS NEVER SAW IT COMING 

Hacking machine learning (ML) in speech, text and face 
recognition – and frankly, everywhere else
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LEGAL NOTICES AND DISCLAIMERS

This presentation contains the general insights and opinions of its authors, Guy Barnhart-Magen and Ezra 

Caltum. We are speaking on behalf of ourselves only, and the views and opinions contained in this 

presentation should not be attributed to our employer.

The information in this presentation is provided for informational and educational purposes only and is 

not to be relied upon for any other purpose.  Use at your own risk! We makes no representations or 

warranties regarding the accuracy or completeness of the information in this presentation.  We accept no 

duty to update this presentation based on more current information.  We disclaim all liability for any 

damages, direct or indirect, consequential or otherwise, that may arise, directly or indirectly, from the use 

or misuse of or reliance on the content of this presentation.

No computer system can be absolutely secure. 

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by 

this document.

*Other names and brands may be claimed as the property of others. 
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PROPER USE DISCLAIMER

No Horses, Flamingos, Hedgehogs, Turtles or sentient* AI 

models were harmed during the making of this presentation

* We hope
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BUILDING ON THE SHOULDERS OF GIANTS

https://www.deviantart.com/callyste/art/Rocket-Raccoon-and-Groot-485953724
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HOW DID WE GET HERE?

Awesome Conversations  Ideas
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WHAT CAN YOU EXPECT?

What are we going to talk about

What you should be paying attention to

What we are not going to talk about
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CLEVER HANS

https://github.com/tensorflow/cleverhans

https://upload.wikimedia.org/wikipedia/commons/e/e3/CleverHans.jpg
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http://www.cleverhans.io/security/privacy/ml/2016/12/15/breaking-things-is-easy.html

https://pbs.twimg.com/profile_images/799327801388077057/HcDnA1H7_400x400.jpg

“We have reached the point where machine 

learning works, but may easily be broken” 

Nicolas Papernot, Google PhD Fellow in Security 

Ian Goodfellow, Research scientist at Google Brain
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SOME BACKGROUND
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ARTIFICIAL INTELLIGENCE?

Machine Learning
Study many images labeled as flamingo
Identify the flamingo in the image

https://upload.wikimedia.org/wikipedia/commons/b/ba/Alice_par_John_Tenniel_30.png
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ARTIFICIAL INTELLIGENCE?

Machine Learning
Study many images labeled as flamingo
Identify the flamingo in the image

Deep Learning
Study many images
Identify the flamingo, hedgehog, etc.

https://upload.wikimedia.org/wikipedia/commons/b/ba/Alice_par_John_Tenniel_30.png



@barnhartguy @acaltum

ARTIFICIAL INTELLIGENCE?

Machine Learning
Study many images labeled as flamingo
Identify the flamingo in the image

Deep Learning
Study many images
Identify the flamingo, hedgehog, etc.

Artificial Intelligence
Is she hugging the flamingo, or playing 
cricket?
Is she happy, sad?

https://upload.wikimedia.org/wikipedia/commons/b/ba/Alice_par_John_Tenniel_30.png
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EVERYBODY EXCHANGES 
“AI” AND “ML”

So do I

Sorry
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“INTELLIGENT” SYSTEM

Most AI systems were 

designed to solve a specific 

problem, well. 

https://www.reactiongifs.us/wp-content/uploads/2015/02/do_the_robot_futurama.gif
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MACHINE LEARNING 101
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WHAT IS A ML MODEL?

Input Output

3 Inner/Hidden 

LayersWeights

Aggregation

Input Layer

Output Layer
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WHAT IS A ML MODEL?

• Training: Iterative process to adjust weights

• The “model” includes:

○ Topology/Layout

○ Weights/Parameters

○ Functions

• This is the real IP (Intellectual Property) in the system!
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• When multiplying one matrix with another, you get a new matrix
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NOW SERIOUSLY

• When multiplying one matrix with another, you get a new matrix

• The values are the product of the rows and columns of these 

matrices

• A vector is a single dimensioned matrix, so an array is a vector, 

and a matrix is a two dimensional array
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CODE POINT OF VIEW

int16 vector = [];

struct weights {

int rows;

int cols;

double **data;

};
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TOO MUCH VOODOO!

Input IR
Matrix 

Multiplicati
on

Output Mapping Prediction

Images

Audio

Binaries

Text

Classification

Confidence



@barnhartguy @acaltum

TOO MUCH VOODOO!

Images

Audio

Binaries

Text

Classification

Confidence

Intermediate 

Representation

(encoding)

Aggregation, 

confidence score

Decode back 

to labels

Input IR
Matrix 

Multiplication Output Mapping Prediction
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FROM TRAINING TO INFERENCE

Input IR
Matrix 

Multiplication Output Mapping Prediction

Iterative Process
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FROM TRAINING TO INFERENCE

Input IR
Matrix 

Multiplication Output Mapping Prediction

Iterative Process

Input IR
Matrix 

Multiplication
Output Mapping Prediction

Training

Inference
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MODEL != CODE
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EXECUTABLE

Code execution flow Math operations, transition functions

ML MODEL
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EXECUTABLE

Code execution flow

Data Structures

Code Review or Reverse Engineering

Math operations, transition functions

Intermediate Representation

Model structure (Black Magic)

ML MODEL
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$ HEXDUMP /MODELS/RESNET
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FUN FACTS!

The algorithm is designed to optimize for the “strongest 

signal”

The model (matrices) can be GB in size

Bias is a part of the system learning process
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BIAS - SOLVING THE WRONG PROBLEM
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FROM TRAINING TO INFERENCE

Input IR
Matrix 

Multiplication Output Mapping Prediction

Training

Inference

Input IR
Matrix 

Multiplication Output Mapping Prediction

Data 
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prediction
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SCORING
We used the CVSS 3.0 scoring, and ordered by business 

impact
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TOP 5 ATTACKS (CVSS)

1 DoS 7.5 (High)

2 Misprediction (adversarial attacks) 7.5 (High)

3 Model Tampering 7.4 (High)

4 IP Theft 5.9 (Medium)

5 Backdoors 3.9 (Low)
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TOP 5 ATTACKS (BUSINESS IMPACT)

1 IP Theft 5.9 (Medium)

2 Model Tampering 7.4 (High)

3 DoS 7.5 (High)

4 Backdoors 3.9 (Low)

5 Misprediction (Adversarial attacks) 7.5 (High)
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HOW TO BUILD AN ATTACK

What do you need to know?

What areas should you target?

What do you need to have access to?
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WHERE TO ATTACK?

You can either go after the system infrastructure, or the algorithms
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RECAP
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PARSING

ML needs to convert the input into a matrix

Parsing is hard

AI developers don’t develop file formats. Or parsers.

The common solution is to just bring the dependency into the 

project
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So – they are bringing outside libraries into their stack
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DEPENDENCIES

So – they are bringing outside libraries into their stack.

And bringing with them a common problem – supply chain 

and patch management

A common framework, must support multiple file formats…

So let’s fuzz the file format parsing
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WE FAILED MISERABLY AT THE BEGINNING

We were fuzzing on a pretty large compute cluster, but we had 

terrible performance!



@barnhartguy @acaltum

What to focus on?

Caffe

Why focus here?

Full coverage

Issues?

Extremely slow

FUZZING
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What to focus on?

Caffe

OpenCV

LibXXX

Upstream

Why focus here?

Full coverage

Limited coverage

Very fast

Fuzzing not needed

Issues?

Extremely slow

Medium speed

Unknown code paths

Patched? Workable?

FUZZING
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WE FAILED MISERABLY AT THE BEGINNING

We used a RAM disk to accelerate access

And then used the same cluster for a different research, and 

rebooted

We also forgot to turn off the logging

which lead to a system crash

which lead to loosing some valid crashes
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FACE PALM
Scaling exploitation is hard (DevOps?)
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EVENTUALLY WE GOT OUR GRIP
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PRELIMINARY RESULTS

Almost every exploit category was discovered

Bug collisions

So many crashes

We were like children in a candy store
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INITIAL EXPLOITATION

We focused on crashes in the BMP file format

Mostly – because it’s pretty easy to manually craft
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SO…
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FUZZING → CRASH, NOW WHAT?

1 IP Theft 5.9 (Medium)

2 Model Tampering 7.4 (High)

3 DoS 7.5 (High)

4 Backdoors 3.9 (Low)

5 Misprediction (Adversarial attacks) 7.5 (High)

Is Remote Code Execution (RCE) king?
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POST EXPLOITATION

Let’s demonstrate the TOP 5

Input: Image file (~10K)

Output: Label (string)
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DEMO TIME
Denial of Service
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DEMO TIME
Remote Code Execution (RCE)
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DEMO TIME
Model Tampering
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DEMO TIME
IP Theft
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NO DEMO
You actually saw this already 
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SO MAYBE RCE IS KING AFTER 
ALL?
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AND IF YOU DON'T HAVE AN 
RCE?

Let’s go after the algorithms!
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ATTACK OF THE CLONES

Machine Learning 
Model

Attacker 
controlled data

Output

Training Data

Features

Pre-processing

Machine Learning 
Model

ML Optimization

Accuracy

Cloned ML Model

Deployment
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CLONING

White box – full access to model and training data (Easy)
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CLONING

White box – full access to model and training data (Easy)

Grey box – no access to model and training data, but 

educated guesses help (highly succesful)

Black box – no idea, exporation via probing, build a map 

(similar to a Reverse Engineering effort, research WIP)



@barnhartguy @acaltum

WHAT IF THE ATTACKER HAS ACCESS TO 
THE TRAINING DATA?
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BACKDOORS

Inject crafted data to the training set with label of your choice
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BACKDOORS

Inject crafted data to the training set with label of your choice

No known way to detect (or reverse engineer)!

This is still an open question academically
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ENCODING

Learning is encoded in the matrix

You cannot reverse the matrix to learn “discover” made it learn 

specific things

Which means, there is no way to tell what it actually learned

This is also useful in other contexts…
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MISS-PREDICTIONS (ADVERSARIAL ATTACKS)

You can manipulate the output with a crafted input

;-)

Remember, the system optimizes for the “strongest signal”
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TURTLE OR A RIFLE?

99

https://www.labsix.org/physical-objects-that-fool-neural-nets/
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ADVERSARIAL AUDIO

“okay google browse to evil dot com”

“okay google without the dataset the article 

is useless”

https://nicholas.carlini.com/code/audio_adversarial_examples/ 
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EVADING NEXT GENERATION AV USING AI

https://media.defcon.org/DEF%20CON%2025/DEF%20CON%2025%20presentations/DEFCON-25-

Hyrum-Anderson-Evading-Next-Gen-AV-Using-AI.pdf

https://www.youtube.com/watch?v=FGCle6T0Jpc
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WHAT ABOUT PRIVACY ?
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PRIVACY LEAKS? NOT YET, BUT SOON…

Training
Inference

Risk: 7.4% Risk: 35.3%
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PRIVACY LEAKS? NOT YET, BUT SOON…

Training
Inference

Risk: 96.2%
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KEY TAKEAWAYS - RESEARCHERS

We need a better trust model for ML and a lot more research!

More focus should be on the infrastructure

The interfaces between the stages are very vulnerable (hint hint)
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KEY TAKEAWAYS - ATTACKERS

This is a ripe field for attacks

High value targets

Huge dependency stack
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KEY TAKEAWAYS - DEFENDERS

Machine Learning needs sanitation and security controls too

Use Machine Learning models from untrusted sources with caution

Validate the data you rely on - does it include negative cases? abnormal 

cases?
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There is no AI.

It’s just someone else’s code.
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HOW TO PROCEED?

Come talk to us!
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ANY QUESTIONS?

@barnhartguy @acaltum


